Important Information,
Please Read Before Use!

KLING & FREITAG GmbH
Junkersstraße 14
D-30179 Hannover
TEL +49 (0) 511 96 99 70
FAX +49 (0) 511 67 37 94
www.kling-freitag.de
Table of contents

1 Introduction 5
 1.1 Icons Used 5
 1.2 About this Manual 5
2 System Requirements 6
3 Running the Software 6
 3.1 Multiple Users 7
4 License Agreement 8
5 Network Configuration 9
6 Screen Overview 11
 6.1 The Setup Screen 11
 6.2 The Beam Screen 12
 6.3 The Audio Tools Screen 14
 6.4 The Groups Screen 16
 6.5 The Status Screen 17
7 Setting up a New Project 18
8 Array Setup 18
 8.1 Indicator Statuses 18
 8.2 Units of Measure 19
9 Fallback Setup 19
10 Audience Area 21
11 Beam Setup 22
 11.1 Mechanical down-tilt 22
 11.1.1 Down-tilt Angle 23
 11.1.2 Load Adapter 26
 11.1.3 The Simulate Mechanical Tilt Screen 27
 11.1.4 Determining the Load-Adapter Position 27
 11.2 Aligning the Sound Beam 28
 11.2.1 Optimizing the Sound Beam 29
 11.2.2 Viewing Absolute Sound Levels 30
12 Connecting More Speakers 31
 12.1 AMP OUT 32
 12.1.1 Operating a PASSIO SUB through the AMP OUT 32
 12.1.2 Operating Other Speakers through the AMP OUT 32
 12.2 AUX OUT 32
13 Equalizer Setup 33
14 Configuring Speaker Groups 34
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Saving Configurations</td>
<td>34</td>
</tr>
<tr>
<td>15.1</td>
<td>Saving and Loading Projects</td>
<td>35</td>
</tr>
<tr>
<td>15.1.1</td>
<td>Storing a Project</td>
<td>35</td>
</tr>
<tr>
<td>15.1.2</td>
<td>Loading a Project</td>
<td>35</td>
</tr>
<tr>
<td>15.1.3</td>
<td>Changing Project Names</td>
<td>36</td>
</tr>
<tr>
<td>16</td>
<td>Password Protection</td>
<td>36</td>
</tr>
<tr>
<td>17</td>
<td>Tweak Your Settings</td>
<td>37</td>
</tr>
<tr>
<td>18</td>
<td>Mute Settings</td>
<td>37</td>
</tr>
<tr>
<td>19</td>
<td>GPIO setup</td>
<td>37</td>
</tr>
<tr>
<td>19.1</td>
<td>GPI Setup</td>
<td>38</td>
</tr>
<tr>
<td>19.2</td>
<td>GPO Setup</td>
<td>38</td>
</tr>
<tr>
<td>20</td>
<td>Overview of Your Array Setup</td>
<td>39</td>
</tr>
<tr>
<td>21</td>
<td>Exporting to the EASE Format for Simulation</td>
<td>40</td>
</tr>
<tr>
<td>22</td>
<td>Updating the Software</td>
<td>42</td>
</tr>
<tr>
<td>22.1</td>
<td>Updating the VIDA App</td>
<td>42</td>
</tr>
<tr>
<td>22.2</td>
<td>Updating the Speaker Firmware</td>
<td>42</td>
</tr>
<tr>
<td>22.3</td>
<td>Upgrading the Dante Firmware</td>
<td>46</td>
</tr>
<tr>
<td>22.3.1</td>
<td>Information on the Installed Dante Version</td>
<td>46</td>
</tr>
<tr>
<td>22.3.2</td>
<td>Dante Firmware-Update Instructions</td>
<td>47</td>
</tr>
<tr>
<td>23</td>
<td>Switching to High-Contrast View</td>
<td>52</td>
</tr>
</tbody>
</table>
1. Introduction

Thank you for purchasing a KLING & FREITAG product. To guarantee trouble-free operation, read these user’s manual carefully before use. You will find that your VIDA App is truly a versatile pro-grade tool.

1.1 Icons Used

This icon indicates a risk of injury or death. Not following these instructions may result in serious health problems including potentially fatal injuries.

This icon indicates a possibly dangerous situation. Not following these instructions may cause minor injuries or damage.

This icon marks information provided for simplified use of the described products.

1.2 About this Manual

VIDA App software manual.

© KLING & FREITAG GmbH. All rights reserved.

All specifications regarding the features of the described products and applicable safety guidelines provided in this manual are based on information available at the time of publishing.

All information in this manual is subject to change without notice.

To ensure safe operation, all persons using the speaker system must have access to these user’s manual and all other relevant material during installation.

All KLING & FREITAG manuals are originally authored in German.

KLING & FREITAG spare manuals are separately available for order or can be downloaded from our website: www.kling-freitag.de.

Contact Us: info@kling-freitag.de
KLING & FREITAG GMBH, Junkersstr. 14, D-30179 Hannover
Phone +49 511 96 99 70, fax +49 511 67 37 94 (other countries)
2. System Requirements

One of the following operating systems is required for using the VIDA App:

- Windows 8.1 (32/64 bit)
- Windows 10 (32/64 bit)

Screen Resolution

- The minimum screen resolution required for running the app is 1024 × 768.

Installation

To start the installation of the K&F VIDA App, go to the Microsoft Store, search for “VIDA App”, and select and install the software. On Windows 8 or Windows 8.1, you might need to place the app icon on the Windows tile interface.

- http://www.microsoftstore.com

Uninstalled

To uninstall the app, use the Windows software-management features.

3. Running the Software

After program launch, the app shows the Setup screen. The left-hand pane always lists an “offline device”. At the same time, the app searches and lists all VIDA L systems found on the network.

While the VIDA speaker settings are being polled, progress bars appears at each system.

A green bar indicates that the system has found a VIDA and is now reading the speaker settings.

A red bar running from left to right identifies VIDA L systems existing on the network that cannot be operated.
If you try accessing the VIDA L through a WLAN connection, the red bar will appear if your connection fails. In this case, all “lost” VIDA Ls will be removed from the list and will display only after the connection has successfully been restored.

In this case, make sure you use the current firmware and app versions. If you don’t have the latest app version and the latest speaker firmware installed, be sure to update software and firmware as necessary. Improper network settings may result in physical arrays or speakers on the network not being found. In this case, you might reset the affected speakers using the reset dongle or correct the network settings manually.

Refer to the Network Configuration section on page 9 of these user’s manual for how to check and correct the network settings.

To restore the factory defaults, refer to the Reset Dongle section in the First-time Use chapter of the VIDA L speaker user’s manual.

A red dot identifies an improperly configured speaker.

![Image of VIDA L setup interface]

The following applies to VIDA L users:

The red dot will appear when a VIDA L that previously belonged to an array of multiple VIDA L units has separately been restarted. This is because the beam settings stored on the speaker had been for a larger array and are therefore not valid for the individual speaker. This is indicated by both the red front-panel LED and the red dot in the VIDA app.

In this case, to implement a valid configuration, just have a new beam calculated for the speaker, for example, by slightly changing the tilt angle.

3.1 Multiple Users

Note that you cannot set up the VIDA systems on the network using multiple VIDA App instances at the same time. Therefore, only one VIDA App instance can be used on the network at any time.

At startup, the App therefore searches for existing VIDA App instances on the network; in case it finds any, the additional instance will not work as expected.

This message appears if there is an existing VIDA App instance on the network:

![Image of Multiuser Error]

1. Hostname: 192.168.110.115
2. close app
3. get control
1. Warning message showing the IP address of an existing VIDA App instance on the network

2. **Close App button**: Closes the app.

3. **Get Control button**: Assigns VIDA control to this instance. In addition, the message below will appear on the VIDA App instance existing on the network:

 ![Multiuser Error](image)

 - **Accept button**: Assigns VIDA control to new newly added VIDA App instance.
 - **Deny button**: Keeps VIDA control.

4. **License Agreement**

 During installation, be sure to read the license agreement.

 A copy of the license agreement is available in the installation directory of your VIDA App.
5. Network Configuration

In order to use the VIDA App, the VIDA App and at least one VIDA must be logged on to the same network. If this is not the case, VIDA App cannot find and control VIDA.

If the Configure IP button on the Setup screen changes to ‘IP Conflict’ and becomes red, the network configuration does not match one or more arrays connected with the app. In this case, you need to adjust the network configuration.

A remote data connection should always be established via the primary port of the VIDA L.

IP Basics

- IP addresses and subnet masks are strings made up of four 3-digit numbers separated by a dot: ####.####.####.####
- For any two devices—for example, a VIDA L and a tablet—to communicate, the first six or nine digits of their IP addresses must match.
- The number of digits to match depends on where the subnet mask has a value of 255. So wherever a subnet-mask number is 255, the corresponding number must be the same for all IP addresses connected to the network.

 For example: If the subnet mask is 255.255.255.000, the first three numbers of the IP addresses involved must be the same, for example, 192.168.001.xxx. You can assign any value between 0 and 255 to “xxx” but need to make sure that each “xxx” value is unique on the network.

 If the subnet mask is 255.255.000.000, the first two numbers of the IP addresses involved must be the same, for example, 192.168.yyy.xxx. You can assign any values to “yyy” and “xxx” but need to make sure that each combination of “yyy” and “xxx” values is unique on the network.

If you want to change the network settings of the speaker, proceed as follows:

1. On the Setup screen, click the Configure IPs button in the top-left corner to launch the network configuration dialog.

2. On the right side of the window (a), select the VIDA whose network settings you want to edit.

3. Select one of the methods (b) provided for assigning an IP address to the speaker.

 Static IP: Assigns a static IP address.
Auto IP: This function automatically selects and requests an address from the 169.254.0.0 / 16 net (Zeroconf) (169.254.0.1 to 169.254.254.254). The subnet mask is always 255.255.000.000.

DHCP: A Dynamic Host Configuration Protocol (DHCP) server will be used for assigning the IP address. Only one DHCP server may be present in the network. After 30 seconds, if no DHCP server has been found on the network, the VIDA automatically falls back to generating and requesting an Auto IP address.

4. When using a static IP address:
 - If necessary, ask the network administrator for static IP addresses and the subnet mask.
 - Request the subnet mask from your network administrator and enter it into the Subnet field (c).
 - Enter an address from the valid address range into the IP field (c).
 - Enter the IP address of the VIDA L into the Gateway field (c).

5. Confirm your entries with the ‘Change’ button (d).

If you have performed all IP-configuration steps properly, the networked devices should now be able to communicate.
6. Screen Overview

You can combine up to 8 VIDA L speakers to a speaker array. All speakers on an array behave like a single speaker. Therefore, individual speakers are also referred to as “arrays” in these user’s manual.

6.1 The Setup Screen

In the Setup screen, you select the audio and fallback inputs and set the gain of each array.

1. Menu bar
2. Setup button: Allows for setting up the base units and for viewing the app-software version.
3. Configure IPs button: Allows for configuring the network settings.
4. Save Project / Open Project buttons: Use these for storing or loading a project.
5. List of accessible VIDA L arrays
6. Inverts the signal phase at the analog input.
7. The name of the selected array.
8. Input Routing pane: This is where you select a primary input.
9. Input: This is where you select a fallback input.
10. Input-Signal Level
11. Tone Generator: Slider for configuring the tone generators
12. Off: Disables the fallback selection.
13. Input Gain button: Click to enter the gain level using the keyboard.
14. Input-port name
15. Gain slider (with fine-tune scale in the upper adjustment range)
16. User Presets: Buttons for loading and saving user presets
17.
Configure GPIO: Button for configuring the GPIOs

18. Graphical view of the selected array (allows for configuring offline arrays)

If you want to pre-simulate a sound-reinforcement setup using an offline device, another icon will show above the array image displayed in the array view on the right-hand side.

Using that icon, you can set the length of the offline device.

This is critical for accurately emulating the mechanical down-tilt angle since all calculations are based on the array length.

6.2 The Beam Screen

The Beam screen allows for precisely configuring the sound-beam settings of each array.

This is where you can define audience areas with different down-tilt angles and sizes and precisely aim the sound beams of the available arrays using the beam-steering algorithms. In addition to adjusting the overall angle of the sound beam, you can also change the spread angle or enable a second sound beam. This allows for configuring separate sound directions, for example, for audience areas of different heights. The program graphically displays the effects of your settings for each frequency for visual checking.

Clicking the Ease Export button will export all relevant settings to the XGLC format readable for Ease. For more details on this function, refer to the EASE Data VIDA guide available in the Downloads > Simulation Data section of our website. You will find it in the EASE-Data VIDA zip file.

1. Menu bar
2. List of reachable arrays and slideout bar (for expanding and collapsing the view)
3. Position of the selected array as a sound source in the plot.
4.
Simulate Mech. Tilt button: Calculates the load-adapter position on the flying frame required for achieving a specific mechanical down-tilt.

5. Ease Export button: Use this for exporting your settings to the Ease format.

6. Tilt slider: Beam-steering setting

7. Spread slider: Sets the sound-beam spread angle.

8. Plot of the sound-beam cross section.

9. Audience-area representation with various adjustment options.

10. Audience Gain button: Toggles between the sound-beam plot and the audience-area view.

11. Split Beam pane: Enables or disables the split-beam feature (see items 12–14 below).

12. Level slider: Sets the level ratio between the second and first sound beams.

13. Tilt slider: Sets beam steering for the second sound beam.

14. Spread slider: Spread angle of the second sound beam

15. Buttons for viewing the sound-beam plot for various frequency ranges.

16. Optimize Beam selector: Enables or disables the electronic beam optimization.

17. X-Over option: Enables or disables an adjustable crossover frequency for the second sound beam.

18. Frequency slider: Sets the crossover frequency for the second sound beam.

19. Reset button: Clicking this button restores the default settings.

20. Preset button: Clicking this button opens a popup where you can save, restore, and delete sound-beam settings.

Plot Icons

Using this icon, you can move the entire audience area in the graphical area.

Using these icons, you can change the starting and ending points of the audience area.

Use this icon to change the object settings.
Slide-Out
Clicking the mark on the slideout bar will expand part of the screen to display more information.

- A: Click here to expand the slideout. The screen will then show additional information or setting options. The sample screen shows the full array name.
- B: Click here to collapse the slideout.

6.3 The Audio Tools Screen
On the Audio Tools screen, you can configure separate graphic-equalizer settings for each array. This is done either by clicking the parameter settings in the table and entering the values from the keyboard or by changing the relevant filters using the graph. In addition to the Master gain settings, there is also a One Knob setting that allows for compensating excessive low or high ends.

To reset all settings made, click the Reset button.

Clicking the Preset button opens a popup where you can save your configuration as a preset and load or delete presets. In addition, you can apply the current settings to the selected array.

The following applies to VIDA L users:
After installing the VIDA C, you can check the desired effects.

If you have connected a listed K&F woofer to the VIDA L, select the settings for that woofer.

You can connect the following woofers right to the AMP OUT of a VIDA L: K&F PASSIO SUB 12, K&F PASSIO SUB 15.

The AUX OUT button allows for editing the aux-out signal parameters. For example, you can connect a power amplifier to the AUX OUT for driving extra woofers or supportive speakers.
1. **Menu bar**

2. **List of reachable arrays and slideout bar (for expanding and collapsing the view)**

3. **Master pane**: Sets the gain of the selected VIDA array. Note that this does not affect the AMP OUT and AUX OUT.

4. **Mute button**: Mutes the VIDA overall system and any other outputs.

5. **Delay pane**: Allows for configuring and enabling a speaker-line delay. Note that the delay does not affect speakers connected to the AMP OUT or AUX OUT.

6. **One Knob pane**: Use this control for compensating excessive low or high ends.

7. Equalizer graph that also allows for making immediate adjustments.

8. **Pro-grade Equalizer**: Click and drag the nodes to adjust the parametric-equalizer settings. To enable or disable the equalizer, click the On/Off buttons.

9. **Mode buttons**: Allows for toggling between full-range and low-cut modes.

10. **VIDA C buttons**: Toggles the horizontal directivity (when using a VIDA C).

11. **PASSIO SUB buttons**: Use these buttons for selecting the PASSIO SUB unit connected to the AMP OUT or disabling it.

12. **Reset button**: Clicking this resets all equalizer settings.

13. **AUX OUT and AMP OUT buttons**: Click these buttons to configure the AUX OUT or AMP OUT, respectively.

14. **Preset button**: Clicking this button opens a popup where you can save your settings as a preset and load or delete presets.

Mode buttons (item 10 above):

- ![Cardioid Polar Pattern](image)
 Produces a cardioid polar pattern.

- ![Hypercardioid Polar Pattern](image)
 Produces a hypercardioid polar pattern.
6.4 The Groups Screen

The Groups screen allows for setting up groups from your previously defined arrays. Parameter changes on the Audio Tools screen will then affect all arrays in a group.

Click the Audio Tools button located at the top of a group column to access the group settings. Note that you can make only audio-tool settings here; beam parameters are not available on this screen.

The filter settings of a group are not added to those configured on the Audio Tools screen but will rather overwrite those settings. When group filters are applied, you will be notified accordingly on the Audio Tools screen.
6.5 The Status Screen

The Status screen provides an overview of all parameters of the available VIDA L arrays that are relevant for operation.

In addition, you can configure a password here to protect your settings.

1. Menu bar
2. **System Status message**: Shows the system overall status.
3. The name of the displayed array.
4. This shows the current output level.
5. **Gain Reduction meter**: Shows the gain reduction applied by the limiter for low, mid, and high frequencies.
6. **GPI Priority indicator**: Shows whether the GPI has received a priority-activation signal.
7. **GPI Mute**: Shows whether the GPI has received a mute-activation signal.
8. Status indicators (Input, Fallback, Split Beam, Optimize, Mode, VIDA C, AMP OUT)
9. Temperature meter.
10. **Password Lock button**: Allows for setting up password protection for your settings.
11. List of stored projects
12. Click this icon to load the project.
13. Click this icon to delete the project. This will display only if no password has been configured.
7. Setting up a New Project

When setting up a new project, we recommend configuring the menu items one after another in the specified order. At completion, you should store your settings for all arrays connected to the app.

1. Check if you can connect to the desired arrays. (see chapter 'Array Setup' on page 18)
2. For each array, identify the audio and fallback inputs. 19
3. On the Beam screen, define the audience areas and align the sound beam(s). (s. chapter 'Beam Setup' on page 21)
4. Align the sound beam(s). (See the Beam Setup chapter on page 28.)
5. On the Audio Tools screen, select the connected woofer(s).
6. Adjust the overall sound. 33
7. On the Groups screen, combine arrays to groups and configure them together as per your requirements. 34
8. On the Status screen, confirm all key settings and monitor the status during operation.
9. Store your project. (See the Storing and Loading Projects chapter on page 35.)
10. Protect your settings using a password. (See the Password Protection chapter on page 36.)

After the basic configuration is complete, you can still make some additional settings.

These include the following:
- Add more speakers your to array. (See the Connecting More Speakers chapter on page 31.) Next, fine-tune your settings. (See the Fine-Tuning Your Settings chapter on page 37.)
- Set up GPIOs and SGPIOs as necessary. (See the GPIO Setup chapter on page 37.) These allow for the system to respond to status changes (for example, an emergency switchover).
- Export your settings to the EASE file format, for example, in order to create a more detailed sound simulation for the entire audio environment using other simulators. (See the Exporting Settings chapter on page 37.)

8. Array Setup

When setting up the VIDA system, if you physically move your device too far away from your network access point or signal strength reduces for any other reasons, a red bar will appear above the VIDA systems displayed on the Setup screen.

This bar will become larger or smaller depending on the connection quality and the sync status. If the bar constantly displays, your network connection has been lost and you cannot continue setting up your speaker system using the app.

If the load icon of any array persists, the software could not read all data from that array.
- In this case, make sure that the app and the speakers use the same network-address space; otherwise, update the settings to include the same address space for all speakers. Refer to the Network Configuration chapter on page 9.
- Make sure that all speakers use the same firmware version and you are currently using the latest app version. Update the speaker firmware and the app as necessary. Doing so will also reset the network settings to the defaults. See also the Software Updates chapter on page 42.
8.1 Indicator Statuses

To correctly identify all speakers that are part of an array, click the LED Sign button in the top right corner of the Setup screen to turn on all speaker LED indicators. This allows for establishing quickly whether or not a specific speaker belongs to the selected array.

The colors of the built-in speaker LEDs visualize the following statuses:

- **Power-up (blue):** The speaker is being powered up and will be ready for operation shortly.
- **Beam error (red-lit):** The speaker has been powered up successfully and is ready for operation; however, the sound-ray setup needs to be checked.
- **Identification (green):** The speaker is part of the selected speaker group.
- **File error (flashing):** Contact your retailer.

8.2 Units of Measure

By default, all distances are given in meters. To change this, click the Setup button in the top-left area of the Setup screen. Here, you can toggle between meters [m] and feet [ft] and also switch the unit of temperature between Celsius [°C] and Fahrenheit [°F].

9. Fallback Setup

Fallback allows for automatically switching to a previously defined VIDA input in case of failure.

For this purpose, select one primary input and one secondary (fallback) input. If the system detects an error at the primary input, it will automatically switch to playing the fallback-input signal.

Determine the audio and fallback ports for each array: The following ports are available:
- Analog, Dante 1, Dante 2, AES 3 L, AES 3 R, and AES 3 L + R.

The following fallback options are available:

<table>
<thead>
<tr>
<th>Primary input</th>
<th>Fallback input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog</td>
<td>No fallback signal configurable</td>
</tr>
<tr>
<td>Dante 1</td>
<td>Analog, AES 3 L, AES 3 R AES 3 L+R, Dante 2</td>
</tr>
<tr>
<td>Dante 2</td>
<td>Analog, AES 3 L, AES 3 R AES 3 L+R, Dante 1</td>
</tr>
<tr>
<td>AES 3 L</td>
<td>Analog, Dante 1, Dante 2</td>
</tr>
<tr>
<td>AES 3 R</td>
<td>Analog, Dante 1, Dante 2</td>
</tr>
<tr>
<td>AES 3 L+R</td>
<td>Analog, Dante 1, Dante 2</td>
</tr>
</tbody>
</table>

When you select an audio port, any possible fallback port will be highlighted in dark yellow. Note that you cannot assign any fallback port to any other port for fallback.

Basically, each Dante port can be configured as a fallback port of any AES 3 port and vice versa.

The analog port can become any other output’s fallback; however, the reverse is not true. Therefore, when you use the analog port as main input, you cannot configure fallback.

In addition, the analog port is the only one to provide phase inversion.
While the full-back input is enabled due to main-signal failure, this will be indicated in the top right corner of the Beam screen.

In this case, the name of the currently used fallback input will alternate between red and white:

In addition, the fallback entry is displayed in red at the overview of the Status screen.
10. Audience Area

In the VIDA App, the term “audience area” refers to the area where the audience is placed while watching the stage. You can set up audience areas and change their dimensions and placement on the Beam screen of the app.

When the VIDA Up is launched, an audience area is automatically created and displayed on the Beam screen. The only thing left to do is adjusting that audience area to your actual environment.

There is no automatic sound-beam alignment to the audience area.

Use these icons for configuring the displayed audience area:

- Using this icon, you can move the entire audience area in the graphical area.
- You can also double-click to enter numerical values using the keyboard. When the input value exceeds the displayed area, the window will be scaled accordingly and will display the audience area reflecting your input.

- Using these icons, you can change the starting and ending points of the audience area.

- This icon changes the ear level.

We recommend using the following procedure:

For some users, the grid feature may come in handy. It displays a grid representing distances and can be enabled or disabled by clicking the Grid button in the bottom left corner of the Beam screen.
1. Use the arrow icons for configuring the audience-area size as desired. If the displayed range of the beamplot window is too short, one can double-click the right arrow symbol of the audience area and enter a required value for the distance. The beamplot window will scale up to show the entered value.

2. Place the audience area using the move-arrow icon.

3. Adjust the ear level of the audience area using the gear icon.
 - The app emulates the frequency response for the selected ear level.
 - The ear level of the audience is visualized by a broken line.
 - The software suggests separate values for standing and seated audiences; however, you can change these as desired.
 - The values entered here relate to the audience-area floor.

4. When using the Split Beam option for splitting the VIDA L sound beam, the software creates a second audience area.
 - To configure a new audience area, proceed as above starting at step 1.

11. Beam Setup

After configuring the basic array settings, you can define audience areas and adjust the sound-beam settings on the Beam screen.

11.1 Mechanical down-tilt

To implement a mechanical down-tilt, you need to specify the flying-frame bore position where you need to mount the load adapter to the flying frame.

To calculate the load-adapter mounting location on the flying frame required for a specific mechanical down-tilt:
 - Configure an offline array of the desired length.
 - On the Beam tab, click the Simulate Mechanical Tilt button.

Note that with online devices, you cannot enter the angle directly; instead, you can use the down-tilt measured using the built-in goniometer in your calculations.
To achieve a very large mechanical down-tilt, you might need to mount the outrigger to the flying frame. The outrigger adds 18 more bores, thus extending the range of available down-tilt angles.

If you want to achieve even larger down-tilts, you may need to mount another flying frame and outrigger below the speaker or array. This allows for moving an array of up to 6 speakers into any desired position. Arrays consisting of more than 6 speakers have a maximum down-tilt in order to meet structural requirements.

Therefore, always keep in mind that you cannot freely tilt your array if it includes more than 6 speakers.

Be sure to follow the information provided by the VIDA App—in particular, be sure to comply with the indicated down-tilt angles. If this is not possible, don’t suspend the array!

11.1.1 Down-tilt Angle

Danger! Risk of injury from falling objects!

Improperly mounted speakers are not safe for suspending. Objects falling down impose a deadly risk for people standing near-by!

With these array setups, be sure not to use the following bore combinations:

<table>
<thead>
<tr>
<th>VIDA L without VIDA C:</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 x VIDA L</td>
</tr>
<tr>
<td>8 x VIDA L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VIDA L with VIDA C:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 x VIDA L with VIDA C</td>
</tr>
<tr>
<td>6 x K&F VIDA L with K&F VIDA C</td>
</tr>
<tr>
<td>7 x VIDA L with VIDA C</td>
</tr>
<tr>
<td>8 x VIDA L with VIDA C</td>
</tr>
</tbody>
</table>

At least 1 flying frame and 1 flying frame extension (if necessary) are required for flying VIDA L arrays.

The load adapter can be mounted to various positions on the flying frame. In addition, you can choose between full-grid and half-grid configurations.

Use the VIDA App for simulating the intended configuration and determine the required down-tilt angle.
See the tables below for minimum and maximum values for various VIDA L speaker-array configurations with or without VIDA C and single-fall or dual-fall suspensions.

Where a negative angle is specified, the speaker faces downwards.

Table 1: Single-fall suspension without/with VIDA C

<table>
<thead>
<tr>
<th>Array size</th>
<th>Minimum angle</th>
<th>Maximum angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.9 / 20.3</td>
<td>-51.5 / -49.2</td>
</tr>
<tr>
<td>2</td>
<td>9.0 / 10.3</td>
<td>-33.4 / -31.4</td>
</tr>
<tr>
<td>3</td>
<td>5.8 / 6.8</td>
<td>-23.9 / -22.4</td>
</tr>
<tr>
<td>4</td>
<td>4.2 / 5.0</td>
<td>-18.4 / -17.3</td>
</tr>
<tr>
<td>5</td>
<td>3.3 / 4.0</td>
<td>-14.9 / -13.9</td>
</tr>
<tr>
<td>6</td>
<td>2.7 / 3.3</td>
<td>-12.5 / -9.7</td>
</tr>
<tr>
<td>7</td>
<td>2.3 / 2.8</td>
<td>-9.8 / -7.4</td>
</tr>
<tr>
<td>8</td>
<td>2.0 / 2.5</td>
<td>-7.9 / -6.1</td>
</tr>
</tbody>
</table>

Table 2: Dual-fall suspension without/with VIDA C

<table>
<thead>
<tr>
<th>Array size</th>
<th>Minimum angle</th>
<th>Maximum angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>-90.0</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>-90.0</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>-90.0</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>-90.0</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>-70.0 / -45.0</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>-40.0 / -30.0</td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>-25.0 / -20.0</td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>-20.0 / -15.0</td>
</tr>
</tbody>
</table>

Note that the actual mechanical down-tilt is transmitted from the speaker to the VIDA App where it is displayed as part of the calculation parameters on the Beam screen.
When you are editing offline devices (i.e. virtual speakers), the buttons displayed will differ. Clicking the Simulate Mech. Tilt button will open the Simulate Mechanical Tilt window where you can emulate the mechanical down-tilt setup.

When you edit the settings of a physical array, the buttons will show the current down-tilt of the selected array.

While the Measure button is enabled, the app will receive down-tilt updates from the array. You will then change the array position while monitoring the down-tilt changes on the app in real time.

After clicking or pressing the button again to exit the measurement mode, the last measured down-tilt will be considered in the sound-beam calculation.

In addition to using a slider, you can enter all of your settings as numerals into the VIDA App. To do so, click the displayed value.

Note that this method is not supported for entering the mechanical down-tilt. This is because the VIDA App first needs to verify the input angle for whether the system complies with the requirements of the German DGUV regulation 17 (BGV C1) and suspending it at that angle is physically possible at all.

Refer to the above tables for permissible angles.
11.1.2 Load Adapter

Warning

Danger! Risk of injury from falling objects!
Improperly mounted speakers are not safe for suspending. Objects falling down impose a deadly risk for people standing near-by!

With array sizes of 7 speakers, be sure not to use the flying-frame outrigger bores 29 and 30.
With array sizes of 8 speakers, be sure not to use the flying-frame outrigger bores 27–30.

The indicated numbers refer to the bore numbers on the flying frame. With bore 13 or higher, you need to use the VIDA L flying-frame outrigger.

As either side of the load adapter can be used, you can set the position in half-steps. This doubles the flying-frame bore grid and thus the adjustment options. Load adapters have a 1/1 Grid marking on one side and a 1/2 Grid marking on the other side. The VIDA App provides information on which load-adapter grid should be used. With the 1/1 grid (A), the arrow on the 1/1 side of the load adapter points towards the flying-frame front; with the 1/2 grid (B), the arrow on the 1/2 side of the load adapter points towards the flying-frame front.

A: 1/1 load-adapter grid
B: 1/2 load-adapter grid
11.1.3 The Simulate Mechanical Tilt Screen

![Simulate Mechanical Tilt Screen Diagram]

1. **Mechanical Tilt**: Allows for viewing or entering the mechanical down-tilt. When entering a down-tilt angle, the app will verify whether it is safe as per German DGUV regulation 17 (BGV C1).
2. Shows the outrigger if the Extension option (4) is on.
3. **Extension**: This is used for indicating whether or not the optional outrigger is installed.
4. **VIDA C**: Specifies whether a VIDA C is installed.
5. Shows the load-adapter position and grid settings for the selected down-tilt.
6. **Pins**: Shows the 2 bores (pick points) to be used for the selected down-tilt.
7. **Grid**: Shows the load-adapter grid setting (either 1/1 or 1/2).
8. Indicates if a flying frame has been mounted.
9. **2 pickpoints**: Allows for indicating the presence of a second mounted flying frame (On/Off).
10. **Abort**: Cancels the calculation and closes the window.
11. **Reset**: Resets all settings.
12. **Confirm**: Confirms your edits and applies them on the Beam screen.

11.1.4 Determining the Load-Adapter Position

Before implementing the mechanical down-tilt of a speaker array, use the VIDA app for planning and calculating the load-adapter position.

Warning

Danger! Risk of injury from falling objects!
Always use both of the two lock pins supplied for securing the load adapter.
Never secure the load adapter using only a single suspension pin!

During installation, remember to align the load adapter correctly: Depending on your calculation, you need to mount the load adapter either with the 1/1-grid or 1/2-grid orientation. (See also the Load Adapter chapter on page 26.)

To determine the load-adapter position:
1. Select ‘yes’ if you have installed VIDA C. (A)

2. Enter the desired down-tilt using the buttons or the keyboard. (B)

 You can set the down-tilt angle either by clicking the < and > buttons or by clicking the displayed angle and entering the value using the keyboard.

3. Determine whether you need to mount the outrigger. (C)
4. Determine the load adapter orientation (either 1/1 grid or 1/2 grid). (D)
5. Identify the required bore on the upper flying frame. (E)
6. Determine whether an additional flying frame needs to be mounted at the bottom. (F)
7. Click the Confirm button to confirm your entries. (G)

If you cannot specify a larger down-tilt angle, the allowable maximum system load has been reached.

In case you need to implement an even larger down-tilt, you need to mount the outrigger.

If the allowable maximum load has been reached for that configuration, too, you might add another flying frame using the outrigger below the array and lift the array up to a fully horizontal position.

Always be sure to keep the above array-length limits in mind.

Changing the array length without simulating/calculating the mechanical down-tilt is not permissible.

11.2 Aligning the Sound Beam

Whenever you make changes to the sound-beam settings, the app automatically recalculates vertical sound propagation in real time. Still while entering the values, the app will display a coarse preview graph that will become more accurate within a few seconds.

To set the sound beam:
1. On the left side of the screen, select an array to modify sound propagation.

2. Measure the existing mechanical down-tilt, or enter it if known. (See the Mechanical Down-Tilt chapter on page 22.)

3. If your VIDA L array features VIDA C units, 3 polar patterns are available for selection. Select a polar pattern.

 If a K&F woofer is connected, select it from the AMP OUT list.

4. If you require covering two separate audience areas, you will need to split the sound beam. To do so, click the On button in the Split Beam pane. When doing so, a second audience area will automatically be created.

5. Set the audience-area dimensions and position as necessary.

6. Define the audience area and determine the optimum speaker height.

 • **Note:** The higher the speaker is suspended, the better the rear-damping properties yet the less favorable the sound field coverage in front of the speaker. Such setups require a larger spread angle, which, however, limits the achievable volume.

 • **Note:** The lower the speaker is suspended, the less favorable the rear-damping properties yet the better the rear-damping the sound field coverage in front of the speaker. Such setups require a smaller spread angle, which, however, allows for achieving higher volumes.

 • **Note:** Suspending the speaker higher allows for a more consistent level response throughout the audience area.

7. At 8 kHz, direct the sound beam towards the audience-area center.

8. Select the 1-kHz view on the right-hand side of the screen, then open up the sound beam until favorable audience-area coverage has been achieved at ear level.

 Note that the beam spread angle has a value range from –90° to +90°. Negative spread angles focus the beam to a single point.

 Beam focusing through a negative spread angle is used only in very rare special cases as it typically causes unwanted frequency interaction. Therefore, you will normally use positive spread angles.

9. Click the vertical slideout below the level graph and confirm consistent coverage in the Audience Gain view. Also, be sure to check your settings, in particular, for higher frequencies. To do so, select various frequency ranges on the right-hand side of the screen.

10. If necessary, use the Optimize Beam feature to improve the sound beam.

11.2.1 Optimizing the Sound Beam

 Sound propagation can be improved using the Optimize Beam feature. This way, you can suppress side beams, thus allowing for clearer sound-beam separation.

 Sound beam not optimized:
Sound beam optimized:

This way, you can suppress side beams, thus allowing for clearer sound-beam separation.

Note that while allowing for better beam separation, this also limits the achievable maximum level.

Tip

11.2.2 Viewing Absolute Sound Levels

To view absolute sound levels, click or tap onto the graph to measure and position any number of accurate values. Each click will show a new sound level computed for that position.

While pressing the mouse button, you can move that value; releasing it will set the value.

After making your sound-level adjustments, when you change the beam characteristics, all values will be adjusted to the changes.
Additional buttons are displayed in the upper right corner of the beamplot. With this one can change the displayed values from Peak to RMS and vice versa or delete all values.

12. Connecting More Speakers

The following applies to VIDA L users:

Note that the topmost speaker inside a VIDA L array is the 'master' speaker.

Use the AMP OUT and AUX OUT ports of the VIDA master only. Only VIDA Cs must be connected to any VIDA L speaker of an array.

You can connect additional speakers to a VIDA array through the AMP OUT and AUX OUT ports.

Depending on the speakers you intend to connect, you might or might not need to implement additional power amplifiers. For example, the PASSIO SUB 12 and PASSIO SUB 15 woofers can be connected directly (i.e. without using extra amps) to the AMP OUT. Afterwards, they are available for selection immediately in the app.
12.1 AMP OUT

12.1.1 Operating a PASSIO SUB through the AMP OUT

After connecting one woofer unit to the AMP OUT, select it at the bottom-right corner of the Audio Tools screen.

12.1.2 Operating Other Speakers through the AMP OUT

The AMP OUT button located at the right-hand side of the screen allows for accessing the port-setup dialog.

1. **Mute button**: Allows for muting the 'AMP OUT'-port.
2. Phase Inversion: Inverts the signal phase.
3. **Gain**: Use the slider or the input field for entering the gain value.
4. **Solo**: Mutes all ports without affecting the AMP OUT.
5. **Low-Cut On/Off**: Enables or disables the low-cut filter.
6. **Low-Cut slider / button**: Allows for adjusting the low-cut frequency.
7. **High-Cut On/Off**: Enables or disables the high-cut filter.
8. **High-Cut slider / button**: Allows for adjusting the high-cut frequency.
9. **Reset button**: Used for resetting the AMP OUT configuration.
10. **Close button**: Clicking this button will close the window.
11. **Delay pane**: This is used for configuring and enabling a signal delay at the AMP OUT.

12.2 AUX OUT

The AUX OUT allows for connecting active speakers or a setup of passive speakers and a power amplifier.

Click the AUX OUT button on the right-hand side of the screen to configure the Aux Out settings.
1. **Mute button**: Allows for muting the ‘AUX OUT’.

2. **Phase Inversion**: Inverts the signal phase.

3. **Gain**: Use the slider or the input field for entering the gain value.

4. **Solo**: Mutes all ports without affecting the AMP OUT.

5. **Low-Cut On/Off**: Enables or disables the low-cut filter.

6. **Low-Cut slider / button**: Allows for adjusting the low-cut frequency.

7. **High-Cut On/Off**: Enables or disables the high-cut filter.

8. **High-Cut slider / button**: Allows for adjusting the high-cut frequency.

9. **Reset button**: Used for resetting the Aux Out configuration.

10. **Close button**: Clicking this button will close the window.

11. **Delay pane**: This is used for configuring and enabling a signal delay at the AMP OUT.

12. **User-EQ (Pre/Post)**: Used for turning the full-parametric Aux Out equalizer on and off.

13. Equalizer Setup

The Audio Tools screen allows for configuring separate master, delay, EQ, and crossover settings for each VIDA L array.

You can identify each frequency band in the graph by the corresponding field in the table below it. Drag the colored dots on the graph to quickly and conveniently change frequency and gain settings at the same time.

In addition, when using a tablet, you can also change the Q setting of a band by first selecting a dot and then horizontally pinching the curve around it using two fingers.
Of course, you can also just click the values in the table and change them using your keyboard.

We recommend adhering to the following sequence when adjusting the EQ:

1. Configure master settings roughly.
2. Adjust the delay as necessary.
3. Use the parametric EQ for initial room compensation.
4. For example, the One Knob allows for quick compensation of excessive low or high ends. However, remember that using it will considerably affect all EQ settings.
5. If necessary, set the Aux Out level.

14. Configuring Speaker Groups

All VIDA L speakers on the VIDA bus form a speaker array.

Basically, you can group multiple speaker arrays in order to conveniently control them, for example, using a master control.

This would allow for simultaneously changing the volume of all speakers located in a different venue area at the same time.

Another application is using separate speaker groups specifically configured for music, speech, etc. To change just the level of the music, you’d need to group all music arrays for common volume adjustment.

To do so:

1. Switch to the Groups screen.
2. Click the pencil icon in any column to rename the respective group.
3. Use the checkboxes in the columns to select the arrays for the respective groups. Note that you can add the same array to multiple groups.

Repeat this procedure for each speaker group you wish to create.

To change the settings of an entire speaker group, click the Audio Tools button right below the column header. In the occurring dialog, you can make the same settings as on the Audio Tools screen. Compared to the “normal” Audio Tools screen, you can switch speaker groups on the left side of the screen plus you cannot make AUX OUT, AMP OUT, VIDA C, and Mode settings for groups.
15. Saving Configurations

You can use various methods for storing your settings to the VIDA App.

- **USER PRESETS** contain all settings of the selected array. The app stores the user presets locally to all VIDA speakers. You can link your user presets to GPIs and SGPIs in order to provide connectivity to a simple media controller. User presets can neither be stored to a computer nor be transmitted to a computer or another array.

- **Beam Preset, EQ Preset**: This can be found on the Beam or Audio Tools tabs of the app, respectively. Note that the app will store the beam or EQ settings of the selected array only. These settings are stored with the VIDA App and will remain on the computer system running the VIDA App up until they are cleared. This allows for quickly copying, for example, beam settings to another array.

- **PROJECT**: Stores all settings of all arrays to a file. Select the storage location using a dialog. This way, you can store your projects, for example, to a USB drive in order to copy them to another computer. You can add project files in the Switch Project pane on the Status page and enable it using a password-protected app.

When loading a project, you can assign arrays from the project file to the arrays in the current environment in the dialog. (See the Loading a Project chapter on page 35.)

15.1 Saving and Loading Projects

To store your settings for later reuse, you can save them as a “project” on the Setup screen.

The buttons used for saving and loading are located in the top left area of that screen. Click the Save Project button to store your settings to the hard disk; clicking the Open Project button to load previously saved settings for use and editing. Remember that changed settings will not be stored automatically; If you want to keep your updates, you can either overwrite the current project file or store the settings to a new file.

15.1.1 Storing a Project

To store a project:

1. Access the Setup screen.
2. Click the Save Project button at the top of the screen.
3. Select the working folder to store the project to.
4. Specify a valid file name.
5. Click Save.

15.1.2 Loading a Project

To load a project:

1. Access the Setup screen.
2. Click the Open Project button at the top of the screen.
3. Select the working folder containing the desired project.
4. Select the file to load.
5. Click the Open button.

When loading a project, the arrays contained in the project file and those on the network are listed in the left-hand window pane.

If the arrays on the network are not consistent with those in the project file, you first need to “pair” project arrays with the physical ones. Highlight the two items (a), then click the right arrow to move the pair to the Assigned Array Pairs pane. For better identification, you can use the LED Sign function in the dialog to enable the front-panel indicators of available arrays.
If the names and numbers of the arrays match, they are displayed as assigned array pairs in the right-hand pane (c):

To unpair, select the pair in question (c) and click the button to move the items (d). Click the Confirm button to apply the settings.

15.1.3 Changing Project Names

To rename a stored project, load the project file and save it with a different name.

16. Password Protection

To protect your settings, you can configure a password on the Status screen to block access to most controls. With password protection enabled, you can still load and use projects; however, changing parameters or deleting project files is impossible unless the correct password has been provided. This function allows on-site engineers who have no audio background to switch between speaker setups without inadvertently changing parameter settings.

To set up password protection:

1. Click the Password Lock button in the top-right corner of the Status screen to access the password-entry dialog.
2. Enter your password and click the Confirm button.
3. To confirm and store / enable your password, re-enter it in the next window that appears. The app will indicate that password protection is on by changing the display to green and showing a key icon in the title bar. At the same time, icons allowing for deleting project files will be hidden.

The app cannot be operated now; however, you can still switch between the various tabs for viewing.

The operator can now load projects but needs to supply the correct password to make changes.

To cancel password protection and allow for changing project parameters:
1. Click the Password Lock button.
2. Enter your password into the displayed dialog.
3. Confirm.
4. The confirmation screen and the key icon will disappear and the icons for deleting projects will become visible again.

17. **Tweak Your Settings**

To tweak your settings, you can switch between screens and change all settings as appropriate for your needs at any time.

The resulting simulation will always be immediately updated.

To change the array size, just mount another VIDA L speaker to the existing array and connect it using a link cable.

At parameter changes, the simulation will be recalculated and the sound beam will then move to the center of the overall array. This ensures that the addition of a speaker will not render all array settings unusable.

For example:

Let’s say, you have a fully set up array and want to add more speakers to it.

To do so:

1. Mount the speaker below the array and make the necessary cable connections. When the installation is complete, the front-side LED indicators of all speakers will light red. At the same time, the app will mark the array in question with a red dot.
2. Access the Beam screen.
3. Recalculate the sound beam by changing and then reverting the setting of the Split Beam option.

When the calculation is complete, the red dot should disappear and all front-side LED indicators should go dark. The sound beam will then have automatically moved to the center of the array.

18. **Mute Settings**

The app includes a number of mute features that can be accessed on the various screens.

- **Tip**
 - On the **Audio Tools screen**, operating the button will mute all VIDA outputs including AMP OUT and AUX OUT.
 - On the **Audio Tools screen**, clicking the Mute button will mute the AUX OUT.
 - In the **AMP OUT settings dialog**, using Mute will mute the AMP OUT while the array will not be affected. Closing the dialog will cancel muting and unmute all signals enabled before you clicked the button.
19. GPIO setup

The VIDA L is capable of responding to signal changes at the GPI ports depending on the configured GPI settings. For example, you can configure the speaker to switch to a different audio input in case of a rising GPI-signal edge. Such a setup might make sense, for example, as an emergency switchover for public warning.

Click the Configure GPIO button to access the GPIO setup dialog.

Using the button in the top-right corner, you can switch between GPI and GPO setup.

19.1 GPI Setup

The GPIs are designed as floating optocoupler inputs. GPIs are capable of responding to two states: rising and falling signal edges. This way, using 3 signals, you can trigger a total of 6 different events.

The following GPI events can be selected:
- Off
- Mute Toggle
- Change Volume [dB]: (+0.1/-0.1/+0.5/-0.5/+1.0/-1.0/+5.0/-5.0/+10.0/-10.0)
- Select Input: Analog
- Select Input: Dante 1
- Select Input: Dante 2
- Select Input: AES 3 L
- Select Input: AES 3 R
- Select Input: AES 3 L+R

In addition to the 3 standard GPIs, the VIDA L provides 2 extra GPIs: the Mute GPI and the Prio GPI.

Furthermore, there are 8 so-called “SoftGPIs”.

Refer to the Control section in the VIDA speaker user's manual for more information.

19.2 GPO Setup

The GPOs are floating MOSFETs supporting NO (normally open) and NC (normally closed). If the outputs have been enabled using the software, NO is low-resistance and NC is high-resistance to common.

Resistive Load:
500 mA, 60 V AC/DC

Refer to the Control section in the VIDA speaker user's manual for more information.
20. Overview of Your Array Setup

The Status screen provides information about the current settings of each array.

The bottom of the screen lists all speaker arrays you have set up.
21. Exporting to the EASE Format for Simulation

You can export all relevant settings to the EASE file format using just a few clicks. This allows for creating a detailed overall simulation of the room.

Click the EASE Export button on the Beam screen to export the settings.

On the occurring screen, enter the file name and location using the standard Windows 8.x procedure. Confirm the operation by clicking the Save button.

After exporting the data, you can load the Ease software and select the export file.
Clicking Click to Open Dialog on the right-hand of the screen will open another dialog providing additional details. Clicking the Import button will import the settings.
You can now work on those data, for example, by simulating sound propagation in the entire audience area.

22. Updating the Software

Like any other software, the VIDA App as well as the speaker firmware are regularly improved and enhanced with more features. To benefit from software updates, make sure to always have the latest software versions installed on the respective devices.

To **update the app**, connect your computer to the Internet.

To implement **speaker-firmware updates**, you need a network link between your computer and the speaker in addition to Internet access.

To perform the updates, first verify your network settings as described in the Network Configuration chapter on page 9. Correct the settings as necessary.

22.1 Updating the VIDA App

Just like with any other software from the Microsoft store, the VIDA App should update automatically.

If it doesn’t, automatic updates might be disabled on your system. In this case, search the Internet for information on how to enable automatic updates on your computer.

You may also update the VIDA App manually by browsing to the app page in the Microsoft Store and clicking Update there.

22.2 Updating the Speaker Firmware

To update the VIDA speaker firmware, you first need to download the corresponding file from our website.

From the K&F homepage, change to the Project page, or enter the following URL into the location bar of your browser:

- http://www.kling-freitag.de/prorental/vida/firmware/#detail

Click the firmware-download link and store the file to your computer.

To update the speaker firmware:

If you know the IP address of the VIDA L to be updated, skip to step 3.

1) In the VIDA app, launch the IP-configuration dialog.
2)

Make a note of the speaker’s IP address displayed.

![Resolve IP Conflicts](image)

3)

Enter the IP address into the address bar of a web browser. When doing so, omit all leading zeroes.

For example: If you want to access the address 192.168.000.015, enter “192.168.0.15” into the browser’s address bar.

Please note: Any leading zeroes must be removed even if you have copied and pasted the address using the clipboard.

![Vida App](image)

4)

In the occurring speaker menu, click Software Update.
5) Either select the actual firmware installation file from the dialog or drag and drop it onto the appropriate page area using the mouse.

6) Click Upload Firmware.

7) Wait about 2 minutes for the operation to finish.
8) Click Update.

9) Wait about 5 minutes for the operation to finish.

10) When the update is complete, a Rebooting Now message will be displayed. Be sure to wait at least 10 seconds before completing the operation, for example, by disconnecting the VIDA from the mains.

When the update is complete, the speaker will reboot and will then be ready for operation.
22.3 Upgrading the Dante Firmware

In specific cases, you may need to update the Dante firmware on the VIDA speakers as well. To find out, compare the version number of the Dante firmware running on your speaker with the version number indicated on the product page of the Kling & Freitag website.

We recommend using an IP address that has been automatically assigned to your computer by a DHCP server.

Make sure that an enabled firewall does not prevent network access from your updater.

Verify that you can access and control the VIDA speaker using the VIDA App.

Run the Dante Updater as an administrator.

We recommend reviewing the Audinate website for details on the Dante system.

22.3.1 Information on the Installed Dante Version

Launch the Dante Controller and switch to the Status tab.

Find the product version in the Device Information pane.

If the indicated version number is lower than the current version supplied by K&F, be sure to update the Dante firmware on your VIDA speakers.
22.3.2 Dante Firmware-Update Instructions

1) Visit the Kling & Freitag website and go to the Download section.

2) (a) Find the K&F VIDA L item.

 (b) Click the FW (firmware) item in the table.
3) On the opening page, you can download the K&F VIDA L firmware as well as the Dante firmware for the VIDA L.

(a) Download the latest Dante firmware version VIDA L.

Note that this is a compressed ZIP archive; be sure to uncompress it in order to use it. A Dante firmware file that can be applied has the ".dnt" extension—for example, “Vida-V1.0.3.dnt”.

In addition, verify whether the current version of the Audinate Firmware Updater is installed on your system. If not, download and install it.

If the current version of the Firmware Update Manager is installed on your system, skip steps 4 and 5 and continue at step 6.

(b) To install the current updater version, click the Audinate Firmware Updater link.
4)
 (a) For the Windows updater, click the Dante Firmware Update Manager (Windows) link.
 (b) For the OS X updater, click the Dante Firmware Update Manager (OS X) link.

5)
 Click the link displayed on the opening page to download the installer.
 To install the Audinate Firmware Updater, run the downloaded installer and follow the installation instructions.
6) Run the Audinate Firmware Updater.
 On the first page, the program lists the available network options. Select your connection type, then click Next to confirm your selection.

7) To perform a Dante firmware update, select the Update Dante Firmware item at the top.
8) (a) Click the Browse button, then browse to and select the previously downloaded and uncompressed **Dante firmware file** (with the “*.dnt” extension).
(b) Click Next.
(c) We recommend **NOT** to check the Override Device Matching option. Checking that option may render devices not supporting the selected Dante firmware unusable!

![Firmware Update Manager](image1.png)

9) (a) Select the VIDA speakers to update from the list.
(b) Click the Start button to launch the update operation.

If your VIDA system is not listed, verify that you can access and operate it using the VIDA App. If this is not possible, you may need to correct the IP addresses of the devices involved or update the software packages.

For information on how to confirm or change IP addresses, refer to the Network Configuration chapter on page 9.

To perform a software update, refer to the Software Updates chapter on page 42.

![Firmware Update Manager](image2.png)

The Dante firmware update will be completed after a few minutes. Exit the Audinate Firmware Updater and restart your VIDA speakers.
23. Switching to High-Contrast View

The VIDA app has no contrast setting. Therefore, due to the dark app design, readability may be limited in bright environments, for example, outdoors.

In this case, we recommend using the color-inversion feature of the Windows operating system.

To do so:
1. Click the Windows icon in the bottom-right screen corner.
2. Type “Magnifier”.
3. Click the program icon to launch the magnifier.
4. Open the magnifier settings.
5. Move the magnification slider to 100%.
6. Enable the Color Inversion checkbox.
7. Switch to the VIDA app.
INDEX
- AMP OUT status (on/off) .. 15
- Array .. 26
- Array list .. 11
- Array Name ... 11, 17
- Array view .. 12
- Audience area .. 13
- Audience gain .. 13
- Audio Tools ... 16
- Audio Tools screen .. 14
- AUX OUT .. 15
- Beam optimization .. 13
- Beam screen ... 12
- Changing Project Names .. 36
- Configure GPIO ... 11
- Coverage angle of the second sound beam ... 13
- Crossover frequency ... 13
- Current output level .. 17
- Delay ... 15
- Down-tilt angle .. 23
- dual-fall ... 24
- Ease Export .. 13
- Electronic down-tilt .. 13
- Equalizer ... 15
- FallBack ... 11
- Frequency range .. 13
- Full-parametric EQ ... 15
- Gain ... 15
- Groups screen .. 16
- Input gain ... 11
- Input name ... 11
- Input routing ... 11
- Installation ... 6
- IP address ... 11
- Load Adapter ... 22, 26
- Master ... 31
- Mechanical down-tilt .. 12, 22
- Mute .. 15, 37
- Off (Fallback) .. 11
- One Knob .. 15
- Operating mode ... 15
- Operating system ... 6
- Password lock ... 16, 17
- Peak ... 31
- Phase inversion ... 11
- Plot ... 12
- Preset ... 13, 15
- Project load / save .. 11
- Reset ... 13, 15
- RMS ... 31
- Screen Resolution ... 6
- Setup .. 6, 11
• Setup screen... 11,35
• Single-fall..24
• Slide-Out.. 14
• Software...23
• Software version... 18
• Sound beam...13,22
• Sound-beam level ratio.. 13
• Sound level... 30
• Split beam...13
• Spread angle..13
• Spread angle of the second sound beam... 13
• Status screen..17
• System status... 17
• Tone generator... 11
• Uninstalled...6
• Updating the Software.. 42
• User Presets... 11
• VIDA C mode... 15
• Woofer setting... 15
• X-Over.. 13